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THE DESIGN OF MICROMETEORDID PENETRATION EXPERIMENTS 

AS SINGLE-SAMPLING LIFE-TEST SAMPLING PLANS 

By Arthur G. H o l m s  

SUMMARY 

Space vehicles carrying tanks f i l l e d  with l i q u i d  f u e l s  o r  rad ia tors  with 
l i q u i d  coolants are  vulnerable t o  puncture by micrometeoroids and subsequent l o s s  
of f l u i d .  Penetration sampling experiments a re  especial ly  j u s t i f i e d  when manned 
missions requiring high r e l i a b i l i t i e s  are  considered. Rational design of experi- 
ments requires preliminary consideration of the  v a l i d i t y  of conclusions as deter- 
mined by the s ize  of the experiments. Adequacy of the s i z e  can be judged by 
proven c r i t e r i a  of the  customer-vendor r e l a t i o n s  of i n d u s t r i a l  sampling. 

The danger of penetration of a vulnerable p a r t  of a space vehicle i s  assumed 
t o  be measured by the product of the exposed vulnerable area and the time t h a t  
the  mission w i l l  occupy a region of space containing micrometeoroids. The s ize  
of the sample i s  considered t o  be the f a c t o r  by which the t o t a l  sum of area-time 
products of the experiments exceeds the mission vehicle area-time product. Sin- 
gle  binomial sampling plans are  presented t h a t  cover a wide range of values of 
the quant i t ies  of i n t e r e s t .  Procedures a re  suggested for data analysis  following 
experiment a t  ion. 

Sampling plans adequate f o r  decisions where low r e l i a b i l i t y  can be t o l e r a t e d  
were found t o  involve experiment area-time products of 10 t o  50 times the mission 
vehicle area-time product. M i n i m u m  sampling plans adequate f o r  manned vehicle 
r e l i a b i l i t i e s  were found t o  require experiment area-time products 700 t o  7000 
times the mission vehicle area-time product. 

INTRODUCTION 

Space vehicles carrying tanks with l i q u i d  f u e l s  or rad ia tors  with l i q u i d  
coolants a re  vulnerable t o  puncture by micrometeoroids and subsequent loss  of 
f lu id .  Inferences concerning t h i s  hazard have been based on extrapolations of 
low-velocity b a l l i s t i c  data combined with v l s u a l  and radar observations of micro- 
meteoroid frequencies. These inferences ( r e f .  1) have l e d  t o  t h e  conclusion t h a t  
micrometeoroids cons t i tu te  a major hazard deserving d i r e c t  observation by pene- 
t r a t i o n  experiments i n  space. 

Direct observation experiments a re  reported i n  references 2 t o  5. 
l imi ta t ions  of avai lable  launch vehicles have l imi ted  these experiments t o  s m a l l  
exposed areas. Getting s igni f icant  data  i n  allowable observation times has 
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l imi ted  the  experiments t o  very t h i n  s h e l l s  and p a r t i c l e s  t h a t  would be t o o  s m a l l  
t o  penetrate  t he  s h e l l s  of contemplated space vehicles.  The s t a t i s t i c a l  v a l i d i t y  

s h e l l s  has n o t  been invest igated.  
-of extrapolat ing th in - she l l  penetrat ion data  t o  pred ic t  r e l i a b i l i t y  f o r  th ick  

Penetration sampling experiments a re  espec ia l ly  j u s t i f i e d  by missions (such 
as manned missions) t h a t  demand high r e l i a b i l i t i e s .  The s u i t a b i l i t y  of t h e  
vehicle  meteoroid pro tec t ion  f o r  t h e  mission i s  assumed t o  be t e s t ed  by perform- 
ing sampling experiments using one or more s t ruc tu res  having the  same s h e l l  
m a t e r i a l  and thickness  as the  mission vehicle.  The r a t i o n a l  design of such ex- 
periments requi res  t h a t  preliminary consideration be given to t h e  v a l i d i t y  of 
t h e  conclusions as determined by t h e  t o t a l  exposed a rea  of t h e  sampling s t ruc-  
tu res .  
adequacy of t he  s i z e  of proposed experiments. 

One purpose of t h e  present repor t  i s  t o  provide a bas i s  f o r  judging the  

I r respec t ive  of t he  s t a t i s t i c a l  adequacy of present weight- and area-limited 
experiments, t he  range of uncertainty of conclusions from the  data  should be 
assessed. The second purpose of t h i s  inves t iga t ion  i s  t o  provide a method f o r  
t h e  quick ca lcu la t ion  of confidence i n t e r v a l s  from t h e  acquired data. 

The problems of ensuring spec i f ied  r e l i a b i l i t y  against  micrometeoroid pene- 
t r a t i o n  and of ca lcu la t ing  confidence in t e rva l s  a re  reduced t o  analogous problems 
i n  the  customer-vendor r e l a t i o n s  of i n d u s t r i a l  sampling. Sampling plans a re  pre- 
sented i n  t abu la r  and graphical  form t o  show the  consequences, i n  required sam- 
p le  sizes,  of va r i a t ions  i n  des i red  r e l i a b i l i t i e s  and allowable decision e r r o r  
p robab i l i t i e s  as  they vary i n  ranges of p r a c t i c a l  i n t e r e s t .  After  data  a re  ac- 
quired, the  graphs can be used for quick estimates of confidence in te rva ls .  More 
sophis t icated procedures f o r  da ta  reduction a re  discussed i n  appendix A. 
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SYMBOLS 

vulnerable area of mission vehicle 

instrumented area 

acceptance number; mission vehicle design i s  approved i f  number of pene- 
t r a t e d  regions of sampling s t ruc tures  each of area a i  does not exceed c 

index 

sample size; number of instrumented areas, each with ait i  equal t o  AT of 
mission vehicle 

probabi l i ty  

P ( r  > e )  

P ( r  L e )  

unknown constant probabi l i ty  t h a t  area a i  i s  penetrated i n  time ti; 1 - q 
i s  r e l i a b i l i t y  (survival probabi l i ty )  



estimator of q 

designer 's  penetration probabi l i ty  l i m i t ;  mission vehicle design should not 
be re jec ted  i f  q < q1 

lower l i m i t  of confidence i n t e r v a l  

operator 's  penetration probabi l i ty  l i m i t ;  mission vehicle design should not 
be accepted i f  q > q2 

upper l i m i t  of confidence i n t e r v a l  

number of penetrated areas  

mission time 

time of exposure of i t h  area 

designer 's  r i sk ,  upper bound on probabi l i ty  t h a t  mission vehicle design i s  
re jec ted  with an environment where q ,< q1 

operator 's  risk, upper bound on probabi l i ty  t h a t  mission vehicle design i s  
q > q2 accepted with an environment where 

CRITERIA FOR SAMPLE SIZES 

Analogy with I n d u s t r i a l  Sampling 

I n  the planning of micrometeoroid experiments an obvious cost  i s  t ha t  of 
the  experiment vehicle and i t s  payload. If such costs  are t o  be jus t i f ied ,  they 
a re  j u s t i f i e d  by comparison with those of not having the data. A f u l l  quantita- 
t i v e  cost  analysis  needs the  elaborate methods of operations research, which are 
outside the scope of the present paper. This paper presents an elementary anal- 
y s i s  which, when r e l a t e d  t o  given conditions, provides some ' 'rule of thumb" cr i -  
t e r i a  on how large the  micrometeoroid experiments ought t o  be. 
achieved by focusing a t t e n t i o n  on some bas ic  parameters of the t o t a l  operations 
research problem. 

This r e s u l t  i s  

The ult imate purpose of micrometeoroid penetration experiments should be t o  
contribute t o  the  accuracy with which decisions a re  made concerning the  adequacy 
of the micrometeoroid protect ion designed i n t o  important space mission vehicles. 
Insufficiency of data  can contribute t o  two classes  of costs. 

One c lass  i s  the  cost  of being t o o  pessimistic. Errors of pessimism can 
r e s u l t  i n  (1) devoting excessive weight t o  micrometeoroid protection, with con- 
sequent reductions i n  payload or consequent increases i n  t h r u s t  capacit ies,  o r  
( 2 )  abandoning achievable missions. 

A second c lass  of cos ts  i s  the one r e s u l t i n g  from being too optimistic.  As- 
sociated e r r o r s  could r e s u l t  i n  the l o s s  of personnel and the destruct ion of m i s -  
sions. 
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The "rule of thumb" c r i t e r i a  f o r  micrometeoroid experiment s izes  w i l l  now 
be establ ished by defining some parameters t h a t  a re  r e l a t e d  t o  (1) cos ts  of ex- 
cessive pessimism and ( 2 )  cos t s  of excessive optimism. The discussion w i l l  be 
s implif ied by personalizing t h e  two c lasses  of costs .  The cos ts  of excessive 
pessimism are  t o  be a burden on the  mission vehicle designer i n  the  sense t h a t  
he su f fe r s  t he  loss  caused by excessive s h e l l  thickness  or delayed missions. The 
operator i s  defined as the  person who m u s t  su f f e r  t h e  l o s s  from excessive opti-  
mism,  such as the  loss  of l i f e  o r  missions. The micrometeoroid experimenter must 
then, i n  some degree, cont ro l  the  expectation of l o s ses  f o r  both the  mission ve- 
h i c l e  designer and the  operator. 

The terminology just presented implies t h a t  questions as t o  what cons t i tu tes  
an adequate experiment are  amenable t o  c r i t e r i a  t h a t  have been establ ished i n  in- 
d u s t r i a l  sampling, where sampling must s a t i s f y  the  conf l ic t ing  i n t e r e s t s  of pro- 
ducers and consumers. The designer i s  i n  a pos i t ion  analogous t o  t h a t  of t he  
producer; the  operator i s  i n  a pos i t ion  analogous t o  t h a t  of the  consumer; and 
the micrometeoroid experimenter i s  i n  a pos i t ion  analogous t o  t h a t  of t he  sam- 
p l ing  inspector. 

Jus t  as  t he  consumer spec i f ies  a re jec tab le  qua l i t y  l e v e l  and a consumer's 
r isk,  t he  operator can specify q2 a s  the  upper l i m i t  on the  probabi l i ty  of 
penetrat ion and can specify t h a t  the  probabi l i ty  of approving a given mission 
vehicle design (as based on micrometeoroid experiments) s h a l l  be l imi ted  t o  some 
s m a l l  number p ( t h e  opera tor ' s  risk) under t h e  condition t h a t  the  probabi l i ty  
of penetrat ion i s  grea te r  than 92. 

Analogously, j u s t  a s  the  producer designates an acceptable qua l i ty  l e v e l  
and an associated producer's r i sk ,  the mission vehicle  designer can ask t h a t  t he  
micrometeoroid experiments be la rge  enough so t h a t  if the  t r u e  probabi l i ty  of  
penetration i s  l e s s  than the  lower l i m i t  
of t he  proposed mission vehicle design being r e j ec t ed  w i l l  be l imi ted  by some 
small number a. 

q1 (where q1 < q2) ,  the  probabi l i ty  

The procedure leaves decisions uncontrolled under the  circumstance t h a t  t he  
t rue  penetration probabi l i ty  i s  between q1 and q2. The zone f rom q1 t o  q2 
i s  ca l led  the  zone of indifference.  A necessary condition f o r  less than i n f i n i t e  
sample s izes  i s  t h a t  the  zone of indifference be g rea t e r  than zero. The s ize  of 
the  zone of indifference should be adjusted according t o  t h e  cost  of sampling. 

I n  summary, t h e  bas i s  f o r  deciding on sample s i zes  i s  achieved by assuming 
t h a t  the  object of t h e  experiments i s  t o  reach a decision as  t o  whether a par t ic -  
ular vehicle i s  s u f f i c i e n t l y  penetrat ion r e s i s t a n t  for a mission; one of two de- 
c i s ions  i s  reached, namely, (1) safe enough or ( 2 )  no t  safe  enough. Safe enough 
implies t h a t  the vehicle design i s  accepted f o r  the  contemplated mission. Not 
safe enough implies t h a t  t he  vehicle design i s  r e j ec t ed  with respect  t o  t h e  pro- 
posed mission. Because one of only two decisions is  t o  be reached, the decision 
procedure i s  based on s ingle  sampling and i s  subject t o  very elementary methods 
f o r  determining sample s i zes  t h a t  have been proven sa t i s f ac to ry  i n  i n d u s t r i a l  
sampling. (Sampling procedures such as multiple sampling or sequent ia l  sampling 
are  po ten t i a l ly  avai lable  f o r  problems with three  decisions, t h a t  is, t he  choice 
of (1) safe enough, ( 2 )  not safe enough, or (3) ge t  more data  and reconsider. 
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These three-decision procedures a re  not appropriate t o  making a rough preliminary 
estimate of t he  t o t a l  amount of sampling t h a t  w i l l  be needed; but once a program 
whose s ize  i s  determined by elementary methods i s  i n  progress, the  sequent ia l  
procedures a re  avai lable  f o r  making decisions i n  advance of completion of the  ex- 
periments. Some underlying theory of sequent ia l  sampling f o r  l i f e  t e s t i n g  has 
been described i n  r e f s .  6 and 7 . )  

Experimentation 

The present ana lys i s  assumes t h a t  the  micrometeoroid experiments a re  t o  be 
performed with the  same mater ia l  and s h e l l  thickness as  a re  contemplated f o r  t he  
mission vehicle.  The sampling s t ruc ture  i s  t o  be instrumented t o  record micro- 
meteoroid penetrations.  I t s  f l i g h t  path m u s t  be programed t o  sample the  envi- 
ronment t h a t  w i l l  cons t i tu te  the  hazard t o  the  mission vehicle.  Questions such 
.as whether an Earth s a t e l l i t e  w i l l  adequately sample the  environment of a deep 
space mission a re  not within the  scope of the present analysis .  The present 
ana lys i s  merely assumes t h a t  the  sampling s t ruc ture  does sample the  same popula- 
t i o n  of micrometeoroid arrivals as  w i l l  be encountered by the  mission vehicle.  
Other invest igat ions must e s t ab l i sh  the  ru l e s  as  t o  what types of f l i g h t  paths 
have comparable penetrat ion hazards. 

The assumption i s  made t h a t  one or more sampling s t ruc tures  are  launched. 
They need no€ a l l  be i n  space a t  t he  same time; an underlying assumption i s  that,  
although the micrometeoroids may a r r ive  with some degree of clustering, the  popu- 
l a t i o n  i s  e s s e n t i a l l y  homogeneous with respect  t o  the  time span of experiments 
and r e l a t e d  missions. Separate launchings a t  successive times could provide a 
t e s t  of homogeneity. 

The mission vehicle  has vulnerable surface area A and hazardous mission 
time T, so  that  a measure of the  hazard i s  provided by .the area-time product 
AT. The sampling s t ruc tu res  w i l l  have other  areas  and exposure times. The ob- 
servat ion of a penetrat ion probabi l i ty  assumes t h a t  the  sampling w i l l  be suffi- 
c ien t  t o  include a f a i r  representat ion of the  micrometeoroids t h a t  a r r ive  i n  
c lus te rs .  I n  averaging out t h e  v a r i a b i l i t y  associated with cluster ing,  t he  use 
of long observation times (and correspondingly small a i )  w i l l  be a n  advantage. 
The same s t ruc ture  i s  more l i k e l y  t o  be subjected t o  a s e r i e s  of independent 
c lus te rs .  Increasing the  exposed area of a s ingle  s t ruc ture  cannot provide a 
comparable improvement i n  the  averaging of c luster ing,  because the dimensions of 
the  exposed area of a sampling s t ruc ture  a re  negl igible  i n  comparison with the  
dimensions of a c lus te r ;  any p r a c t i c a l  s t ruc ture  would be too  small t o  receive 
penetrat ions by separate c l u s t e r s  a t  any one time. 

The combination of instrumentation and data  reduction i s  assumed t o  be such 
t h a t  the  t o t a l  sampling a rea  over a l l  t he  experiment s t ruc tures  i s  divided i n t o  
n areas.  The observable area-time product a i t i  of each instrumented a rea  i s  
assumed equal t o  the  area-time product of the  mission vehicle.  The sample s ize  
n i s  then the  r a t i o  of t o t a l  experimental area-time product t o  the mission area- 
time product, and because each a i t i  i s  required t o  be equal. t o  AT, 
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i=l 

S.ampling Plans 

A sampling plan cons is t s  of specif ied values of n, a, P, 41, q2, and an ac- 
ceptance number e. If c or l e s s  penetrated samples are  obse rved to  occur 
among t h e  a i  during t h e i r  observation times ti, then the  mission vehicle  de- 
s ign i s  approved. If c + l o r  more of the a i  a re  penetrated during t h e i r  
observation times ti, the  mission vehicle design i s  re jec ted .  The assumption 
t h a t  t he  population of micrometeoroid a r r i v a l s  i s  e s s e n t i a l l y  homogeneous im- 
p l i e s  tha t ,  with respect  t o  a vehicle with vulnerable area A and mission time 
T, there  e x i s t s  a constant probabi l i ty  q of i t s  being penetrated. This prob- 
a b i l i t y  i s  a l so  va l id  f o r  any experiment having exposed area  a i  and exposure 
time ti such t h a t  aiti = AT. Under these  assumptions, t h e  binomial d i s t r ibu-  
t i o n  provides the  probabi l i ty  theory governing the  var iab les  of the sampling 
plan. 

Parametric procedures can be used f o r  constructing sampling plans. The 
present point of view i s  t h a t  the  uncer ta in t ies  of t he  micrometeoroid hazard do 
not j u s t i f y  deciding on sample s izes  by accounting f o r  t he  b e t t e r  e f f i c i enc ie s  
of parametric or sequent ia l  procedures as compared t o  single-sampling, binomial 
procedures. Although single-sampling binomial procedures ask for l a r g e r  sample 
s i zes  than do parametric or sequent ia l  procedures, t he  sample s izes  m u s t  not be 
viewed a s  pessimist ic .  
can cause sample s izes ,  as determined by any method, t o  be too  s m a l l .  

The phenomenon of c lus te r ing  e x i s t s  as an unknown t h a t  

APPLICATION O F  B I N O W  DISTRIBUTION 

Consider n areas  ai exposed t o  micrometeoroid penetrat ion for times ti 
where ait i  = AT. If q i s  regarded as a population parameter f o r  areas  ai 
t e s t e d  t o  time ti leading t o  e i t h e r  of the  observed a t t r i b u t e s  "penetrated" or 
"not penetrated", t h e  experiment corresponds t o  n t r ia ls  where each t r i a l  has a 
probabi l i ty  of penetrat ion of q and a probabi l i ty  of no penetrat ion of 1 - q. 
The binomial d i s t r ibu t ion  gives the  probabi l i ty  of r such penetrations, namely, 

f q r ( l  - q Y r  
n! 

r ! (n  - r). P(r) = 

A sampling plan i s  considered where n areas  a i  a re  placed on t e s t ,  and 
the  population i s  regarded t o  be acceptable i f  c o r  l e s s  of them are  penetrated 
within time ti. The probabi l i ty  t h a t  more than c f a i l  within times ti i s  
then found by summing equation (1) over a l l  values of r f o r  which r 2 c + 1. 
Thus, 
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That is, i f  t he  probabi l i ty  of one a i  being penetrated i n  time ti i s  q, t he  
probabi l i ty  of observing more than c such areas  penetrated i s  given by equa- 
t i o n  ( 2 ) .  

The complementary event i s  the  event of c or l e s s  a reas  ai penetrated i n  
associated observation times ti. 
equation (1) over t h e  appropriate range of 

This probabi l i ty  i s  a l s o  obtained by swmning 
r! 

~2 = P ( r  5 c )  = f: r ! (n  n! - r)! q r ( l  - q)n-r 

r=O 
(3) 

Sampling Procedures t o  Control Designer's Risk 

The designer has been defined a s  des i r ing  t h a t  t he  mission vehicle design 

The decision i s  t o  be based on a sample of 
be approved i f  t h e  environment provides a probabi l i ty  of penetrat ion q 'chat i s  
l e s s  than the  spec i f ied  value 
s ize  n of which r areas  a re  observed t o  be penetrated. The mission vehicle 
design i s  t o  be accepted only i f  r L  c (otherwise re jec ted) ,  where c i s  spec- 
i f i e d  i n  advance. The probabi l i ty  of a decision e r r o r  against  t h e  designer i s  
l imi ted  t o  some small p robabi l i ty  a by choosing c and n so t h a t  

ql. 

The determination of c and n values sa t i s fy ing  equation ( 4 )  i s  made pos- 

Under the  con- 
s i b l e  by equation ( 2 ) .  The s e t  of c and n values sa t i s fy ing  equation (4) i s  
t h e  s e t  f o r  which equation (Z), with 
d i t i ons  t h a t  P1 = CL and q = 91, equation ( 2 )  provides a unique func t iona l  re-  
l a t i o n  among a, ql, c, and n, namely, 

q = 91, r e s u l t s  i n  P1 5 CL. 

If c and n are  t o  be used i n  sampling plans, they m u s t  be chosen as in- 
tegers .  Values of c, n, and q1 sa t i s fy ing  equation (5)  f o r  f ixed  values of a 
have been tabula ted  by severa l  authors ( r e f s .  8 t o  11). Values from references 
8 t o  11 were used t o  p l o t  f i gu re  1, which shows representat ions of equation (5)  
f o r  a = 0.01, 0.05, and 0.10. The regions of f igu re  1 corresponding t o  values 
of n i n  excess of those tabulated i n  references 8 t o  11 were obtained from the  
Poisson approximation as tabulated i n  reference 1 2  and described i n  appendix B. 
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I n  the  use o f  these charts, an experimenter could, f o r  example, begin with 
specif ied a and q1 and then read successively l a rge r  values of n corre- 
sponding t o  c = 0, 1, 2, e tc .  Because P1 of equation ( 2 )  i s  a monotonically 
increasing funct ion of q, such p a i r s  of values of c and n would then provide 
assurance t h a t  

Sampling Procedures t o  Control Operator 's  Risk 

The operator has been defined as being concerned about acceptance of a mis-  
sion design when the  environment provides a penetrat ion probabi l i ty  grea te r  than 
the  specif ied value of q2. 
adverse t o  h i s  wishes be l imi ted  t o  sone s m a l l  p robabi l i ty  P. This i s  t o  be 
done by choosing c and n so t h a t  

The operator asks  t h a t  t he  probabi l i ty  of a decision 

The determination of c and n values sa t i s fy ing  equation ( 7 )  i s  made pos- 
s i b l e  by equation (3) .  The s e t  of e and n values sa t i s fy ing  equation ( 7 )  i s  
t he  s e t  f o r  which equation ( 3 ) ,  with q = 92, r e s u l t s  i n  P2 ,< P. Under the  con- 
d i t i ons  t h a t  P2 = p and q = q2, equation (3)  provides a unique func t iona l  re- 
l a t i o n  among p, 92, e, and n, namely, 

Values of q2 f o r  in teger  values of c and n and f ixed  values of p are  
tabulated i n  references 8 t o  11. Values from references 8 t o  11were  used as 
solut ions of equation (8)  f o r  P = 0.01, 0.05, and 0.10 i n  p lo t t i ng  the  charts  
of f igure  2, except t h a t  the  regions of la rge  n were obtained f r o m t h e  Poisson 
approximation as tabula ted  i n  reference 1 2  and as described i n  appendix B. 
cause P2 of equation (3) i s  monotonically decreasing with q, the paired values 
of c and n of f i gu re  2 guarantee t h a t  

Be- 

I f  a sampling plan i s  t o  be se lec ted  so le ly  t o  pro tec t  t he  operator, then 
corresponding t o  the  given q2 and P the  minimum experiment would correspond 
t o  c = 0. The mission vehicle design i s  r e j ec t ed  f o r  one penetrat ion i n  the  
experiment and accepted only i f  no penetrat ions occur. 
would control  the  hazard t o  the operator t o  t h e  degree spec i f ied  and a t  a mini- 
mum cost  of micrometeoroid experimentation. The cost  of making decision e r ro r s  
dangerous t o  personnel would be controlled, but the  cost  of making t h e  decision 
e r r o r  of being too  cautious would be e s s e n t i a l l y  uncontrolled. Control of exces- 

Such a decision procedure 
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sive caution i s  a t ta ined  by the spec i f ica t ion  of q1 and the designer 's  r i s k  a. 

SAMPLING PLANS FOR JOINT CONTROL OF 

DESIGNER'S AND OPERATOR'S RISKS 

It i s  possible t o  s e l e c t  c and n (which must be in tegers )  t o  s a t i s f y  both 
the  designer and the  operator. A necessary condition f o r  f i n i t e  sample s i z e s  i s  
t h a t  q1 b e ' l e s s  than q2. Conditions necessary f o r  consistency are  t h a t  c 
and n do not change between the constant a, and constant p curves. For ex- 
ample, the  operator might s t a t e  t h a t  he does not wish t o  approve missions with q 
grea te r  than q2 = 0.01, and t h a t  he wants the decision e r r o r  probabi l i ty  bounded 
by p = 0.01. The designer might accede t o  q2 being 0.01, but he might re- 
quire that ,  i f  the  r i s k  of penetration i s  0.001 or l ess ,  the  probabi l i ty  of the 
mission design being re jec ted  must be bounded by a = 0.10. Values of c and n 
sa t i s fy ing  both of these requirements can be found from f igures  l ( c )  and 2(a) .  
Minimum cost of experimentation i s  desired, and therefore f igures  l ( c )  and 2(a)  
should be searched f o r  t h e  minimum n and associated c t h a t  w i l l  meet a l l  the  
specif icat ions.  Some values of c and n can be read from f igures  l ( c )  and 
2 ( a )  as follows: 

Accept- 
ance 

number, 
c 

0 
1 
2 
3 

Sample 

%ig. l ( c ) .  
%ig. 2 ( a ) .  

Designer's pene- 
t r a t i o n  probabil- 

i t y  l i m i t ,  ql, 
0.001; de signer ' s 

risk, a,, 0.10 
( a )  

10 4 
5 30 
1100 
1750 

The preceding tabulat ion shows t h a t  the 

size, n 

Operator 's  pene- 
t r a t i o n  probabil- 

i t y  l i m i t ,  q2, 
0.01; opera tor ' s  

r isk,  p, 0.01 
( b )  

460 
6 60 
8 50 
1000 

n t o  s a t i s f y  a, overtakes the  n 
t o  s a t i s f y  p a t  c = 2. With c = 1 as the acceptance number, a sample of 
s ize  
sa t i s fac tory  because it i s  l e s s  than the  designer 's  lower l i m i t .  Also, c = 1 
and n = 530 are  unsatisfactorgt because they correspond t o  q2 = 0.0125, which 
f a i l s  t o  meet the  opera tor ' s  upper l i m i t .  Taking c = 2 and n = 850 corre- 
sponds t o  q1 = 0.0013 and meets the  designer 's  lower l i m i t .  Taking c = 2 and 
n = 1100 corresponds t o  q2 = 0.0077 and thus  s a t i s f i e s  the  operator 's  upper 
l i m i t .  The most economical sampling plan t h a t  meets a l l  o r i g i n a l  spec i f ica t ions  

n = 660 would (from f i g .  l ( c ) )  be equivalent t o  q1 = 0.0008, which i s  un- 
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occurs f o r  c = 2 and n = 850, which with a = 0.10 and j3 = 0.01 corresponds 
t o  q1 = 0.0013 and q2 = 0.01. 

In t e r r e l a t ions  Among Designer's and Operator's Specif icat ions 

I n t e r r e l a t i o n s  among the  parameters of t h e  sampling plans a re  shown by f ig -  
ures 3(a) and (b),  which a r e  cross  p l o t s  of quan t i t i e s  from f igu res  1 and 2. The 
absolute minimum on sample s i z e  i s  always defined by t h e  c = 0 l i n e .  For ex- 
ample, i n  f igu re  3(a) t h i s  l i n e  shows tha t ,  a t  risks of a = 0.05 and j3 = 0.05, 
spec i f ica t ions  such as q1 = 0.0025 and q2 = 0.14 can be met with a sample 
s i ze  of 20. A t  t he  same 92, decisions can be based on l a r g e r  c and corre- 
spondingly l a r g e r  n values f o r  values of q1 c loser  t o  q2j f o r  example, deci- 
s ions can be made with t h e  same q2 and q1 = 0.025 with c = 3 and n = 54. 

The se lec t ion  of t i g h t e r  e r r o r  bounds (a = 0.01 and j3 = 0.01) produces the  
r e s u l t s  shown i'n f igu re  3(b) .  
and (b) ;  however, close comparison of f igure  3(a) with ( b )  (say a t  
and 
t i ons  of the smaller decis ion error probab i l i t i e s  of f igu re  3(b).  

The general  t rends  a re  t h e  same f o r  f igu res  3(a) 

q2 = 0.100) shows t h a t  l a r g e r  sample s i zes  a re  required t o  meet t he  condi- 
q 1 =  0.002 

Typical Sampling Problems 

Based on da ta  from f igu res  l ( a ) ,  l ( c ) ,  2(a) ,  and 2(c) ,  t a b l e  I compares sam- 
ple  s i zes  intended t o  be appropriate f o r  micrometeoroid experiments r e l a t e d  t o  
instrument and t o  manned payloads. "he parameters of t a b l e  I ( a )  are  based on the  
assumption t h a t  an instrument payload ought t o  be protected against  t he  f i n a n c i a l  
loss  of a mission f a i lu re ,  and a r e l i a b i l i t y  against  penetrat ion of 80 percent 
w a s  assumed t o  be required.  Correspondingly, q2 = 0.20. The CL and p r i s k s  
were s e t  a t  the  l a r g e s t  values t h a t  s t a t i s t i c i a n s  regard a s  t he  t r a n s i t i o n  point  
between objective experimentation and the  realm of t he  occult, namely, 
a = j3 = 0.10. 
s i zes  ( r a t i o s  of t o t a l  exposed area-time products t o  mission area-time product) 
vary from 10 t o  74 f o r  decisions relevant  t o  q2 = 0.20 and q1 i n  the  range 

Corresponding sampling plans a re  l i s t e d  i n  t ab le  I ( a ) .  The sample 

q1 = 0.01 t o  q 1  = 0.10. 

Table I(b) represents  a s i t ua t ion  intended t o  apply t o  manned payloads. The 
r e l i a b i l i t y  i s  spec i f ied  as 99 percent, t h a t  is, q2 = 0.01. 
is ,  of course, t o  be desired.  The spec i f ica t ion  of higher r e l i a b i l i t y  requi res  
l a rge r  sample s i zes  than those l i s t e d  i n  t ab le  I.) The assumption i s  made t h a t  
a manned mission i s  for a purpose s u f f i c i e n t l y  important t h a t  both the  opera tor ' s  
and the  designer 's  r i s k s  should be closely bounded. Correspondingly, l e t  
a = j3 = 0.01. 
b l e  I(b) shows sampling s i zes  from n = 660 t o  n = 6900 th3;t provide protec- 
t i o n  against  r e j ec t ing  t h e  mission from environments t h a t  a re  a s  safe  as 
q1 = 0,00022 t o  q1 = 0.0052. (The mission has a probabili ty,  bounded by a, 
of being grounded out of environments t h a t  have r e l i a b i l i t i e s  as  good as 0.9998 
with c = 1 and n = 660 o r  environments t h a t  have r e l i a b i l i t i e s  as good as 
0.995 i f  c = 50 and n = 6900.) Experiments of comparable s i ze  a re  a l s o  con- 

(Higher r e l i a b i l i t y  

Under these r e s t r i c t ions ,  t h e  s e t  of sampling plans l i s t e d  i n  t a -  
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cluded t o  be appropriate t o  manned missions i n  reference 1. 

Tabular Presentat ion of Sampling Plans 

The preceding discussion concerned charts  t h a t  exhib i t  sampling plans appro- 
p r i a t e  t o  spec i f ied  l e v e l s  of a. and p .  The micrometeoroid experimenter might 
wish t o  begin with spec i f ied  values of ql, q2, and n and then proceed t o  in-  
ves t iga t e  the  consequences ( i n  t e r m s  of a and p )  of ava i lab le  choices of c. 
Table 11 has been supplied i n  an attempt t o  meet such a wish. The values i n  
t h i s  t a b l e  were obtained from reference 13 f o r  values of n of 1000 and l e s s .  
When in t e rpo la t ion  w a s  needed, it w a s  l i n e a r .  The Poisson approximation, as 
described i n  appendix B, w a s  used f o r  l a rge r  values of n. When t h e  Poisson 
approximation was used, t h e  values of a and p were obtained from re fe r -  
ence 14. Table I1 i s  arranged with the  idea t h a t  a micrometeoroid experimenter 
would f i r s t  consider some number 
allowable probabi l i ty  of penetrat ion.  Equivalently, t h e  minimum mission r e l i a -  
b i l i t y  or surv iva l  p robab i l i t y  i s  

q2 t h a t  represents  an approximate maximum 

1 - q2. 

The sec t ion  of t he  t ab le  f o r  the  given value of q2 i s  selected.  The ex- 
perimenter can then scan the  values of n and q1 f o r  what he considers t o  be 
reasonable values of these two quant i t ies .  I n  general, t a b l e  I1 w a s  prepared 
with the  idea t h a t  both a and p should be kept within the  limits 0.01 t o  
0.10. In  order t h a t  t he  smallest  possible  sample s i z e s  can be consiaered, values 
of a and p a re  a l s o  presented t h a t  correspond t o  one s t ep  i n  c t h a t  would 
place a sampling plan j u s t  beyond these l i m i t s  on a and p. If f o r  some q1 
and n only one value of c i s  l i s t e d ,  such an acceptance number should be re-  
garded a s  the  acceptance number t h a t  gives t h e  p a i r  of designer 's  and opera tor ' s  
r i s k s  a and p c loses t  t o  t he  range 0.01 t o  0.10, and these r i s k s  are  read 
f r o m t h e  t a b l e  a s  c r i t e r i a  of t he  precis ion of the  sampling plan. I n  cases 
where, f o r  selected 92, n, and ql, several  values of c a re  l i s t e d ,  the  deci- 
s ion point  c may be chosen f o r  what may be thought t o  be the  most desirable  
apportionment of bounds a and p on the  decision e r r o r  p robab i l i t i e s .  For ex- 
ample, c might be se lec ted  so  t h a t  the  operator 's  r i s k  p would be smaller than 
the  designer 's  risk a. 

QUICK ESTJJNTES O F  CONFIDENCE IXIZRVALS 

Some sophis t ica ted  procedures appropriate t o  the  ana lys i s  of acquired data  
are discussed i n  appendix A. These procedures can be avoided, and quick crude 
estimates of confidence i n t e r v a l s  can be computed as follows. 

If it i s  assumed t h a t  t he  r e s u l t s  of observing a t o t a l  of n areas  ai 
f o r  times ti where each a i t i  = AT are  t h a t  r of t he  n areas  were pene- 
t r a t ed ,  t he  minimum variance unbiased est imator  5 of the  probabi l i ty  q of the 
penetrat ion of a rea  A i n  time T i s  
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This  estimate i s  bracketed with a confidence i n t e r v a l  as follows. Figuse 1 was 
constructed according t o  equation (5) so t h a t  t he re  i s  an a probabi l i ty  of ob- 
serving c + l  .or more areas penetrated i f  q =  ql. Let zl be t h e  value of 
q, obtained from a char t  of f igure  1 f o r  a spec i f ied  a and with c + 1 s e t  
-I 
equal t o  t h e  observed number of penetrated 
a transformation of t h e  random var iab le  r 
with 4’ read from t h e  chart ,  

That is, t h e  probabi l i ty  of not being 

Figure 2 was constructed according t o  
probabi l i ty  of observing c or l e s s  areas  
t h e  value of q2 obtained f r o m  a char t  of 

~ 

areas  ( c  = r - 1). Figure 1 provides 
t o  t h e  random var iab le  zl. Then, 

= a  

l e s s  than the  parameter q 

equation (8) so t h a t  t he re  
penetrated i f  q = q2. Let ?& be 
f igu re  2 f o r  a spec i f ied  ,B and with 

c 
vides a transformation of t h e  random var iab le  r t o  the  random var iab le  42. 
Then, with c2 read f r o m t h e  chart ,  

s e t  equal to- the observed number of penetrated areas  ( c  = r). Figure 2 pro- 

That is ,  t h e  probabi l i ty  of q2 not being g rea t e r  than t h e  parameter q i s  
given by 0. The i n t e r v a l  from Fl t o  cz i s  ca l l ed  a 1 - a - p confidence 
i n t e r v a l  f o r  t h e  parameter q. In  other words, t he  probabi l i ty  of t he  range ql 
t o  q2 covering t h e  unknown parameter q i s  1 - a - P ,  The span of t he  i n t e r -  
val q’ t o  F2 i s  a range of uncertainty associated with the  est imator  < of 
9- 

For example, i n  a sample of n = 1000 it has been observed t h a t  r = 1 5  
penetrations.  The estimator of q i s  

- 15 q -= 0,015 1000 

- and the  estimate of t h e  penetration r e l i a b i l i t y  i s  1 - q = 0,985. An equal- 
sided, 90-percent-confidence i n t e r v a l  i s  desired.  If a = 0.05, p x 0.05, and 
f igures  l ( b )  with c = 14 and 2(b) with c = 15, n = 1000 a re  used t o  read 
ql = 0-0092 
r e l i a b i l i t y  against  penetrat ion i s  between 0,991 and 0.977. From these  same 
data, it i s  possible  t o  e s t ab l i sh  j u s t  a lower bound on the  r e l i a b i l i t y .  I f  
/3 w 0.01, it can be observed from figure 2 ( a )  t h a t  ?& = 0,027 when c = 15 and 
n = 1000. It can be s a i d  with 99-percent confidence t h a t  the  lower bound on the  
r e l i a b i l i t y  against  penetrat ion i s  0.973, 

and 3 = 0,023, it can be s a i d  with 90-percent confidence t h a t  t h e  

CONCLUDING REMARKS 

The mission vehicle  hazard i s  assumed t o  be measured by i t s  area-time prod- 
uct,  and the  sample s i z e  i s  defined t o  be the  f ac to r  by which the  t o t a l  sum of 
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area-time products of the  experiments exceeds the  mission vehicle area-time prod- 
uct. Single-sample binomial sampling plans have been presented. Emphasis has 
been on plans t h a t  l i m i t  decision e r r o r  p robab i l i t i e s  t o  the  range 0 . 0 1 t o  0.10. 
This range was selected with the  idea t h a t  decis ion e r r o r  p robab i l i t i e s  i n  excess 
of 0.10 take the problem out of t he  range of object ive discussion, and t h a t  sam- 
p le  s i z e s  f o r  decis ion e r r o r  p robab i l i t i e s  l e s s  than 0.01 are  l a rge r  than can be 
j u s t i f i e d  i n  view of t he  i n s t a b i l i t i e s  of micrometeoroid a r r i v a l  r a t e s  fac ing  an 
individual  m i  s s ion. 

The sampling plans s t a t e  t ha t ,  i f  the  decision maker i s  concerned with re- 
l i a b i l i t y  l e v e l s  t h a t  a re  customarily associated w i t h  manned expeditions, say of 
approximately 0.99, t he  probabi l i ty  of observing penetrat ions will be very small. 
Acquisit ion of su f f i c i en t  data  f o r  decisions then requi res  large sample s i zes  - 
say i n  the  range 700 t o  7000 times t h a t  of the  mission area-time product. I n  
par t icu lar ,  the  probabi l i ty  of approving a mission vehicle  design f o r  an environ- 
ment having a r e l i a b i l i t y  against  penetration of l e s s  than 0.99 could be l imi ted  
t o  1 percent w i t h  a sample of s i z e  660. Having agreed upon such a specif icat ion,  
t he  r e j ec t ion  of mission vehicle  designs, when the  environment provides much 
b e t t e r  r e l i a b i l i t i e s  against  penetration, would cons t i tu te  an undesirable denia l  
of mission opportunities.  The range of r e l i a b i l i t i e s  i n  which unnecessary rejec-  
t i o n s  of mission vehicle designs can occur should be made as s m a l l  a s  possible.  
This range would be excessive for a sample of s ize  660, where there  would be a 
1-percent probabi l i ty  of r e j ec t ing  a mission vehicle design from an environment 
with a r e l i a l j i l i t y  of 0.9998 or be t t e r .  The region of needless r e j ec t ions  can be 
closed down t o  r e l i a b i l i t i e s  of 0.995 by the  use of a sample s i ze  of 6900. I n  
other  words, a sample s i z e  as  la rge  as  6900 i s  needed t o  control  decision e r r o r s  
under the  conditions t h a t  t he  mission vehicle design should not be approved i f  
t he  r e l i a b i l i t y  i s  l e s s  than 0.99 and should not be r e j ec t ed  i f  the  r e l i a b i l i t y  
i s  b e t t e r  than 0.995. 

On the  other  hand, l imi t ing  t h e  experiments t o  s m a l l  sample s i zes  (area-time 
products of 10  t o  50 times t h e  mission vehicle  area-time product) on ly  permits 
decisions w i t h  l a rge  e r ro r  bounds ( e r ro r  p robab i l i t i e s  of 10 percent) t o  be made 
for much lower r e l i a b i l i t i e s  aga ins t  penetrat ion (80 percent ) .  

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, Ju ly  2, 1963 



INFLUENCE OF INSTRUMENTATION 

Sample Sizes  

Instrumentation systems now under development include three  types t h a t  fur- 
nish one of t h e  following th ree  kinds of data:  

(1) Total  number of penetrat ions of an a rea  i n  a given time period of obser- 
vat ion 

( 2 )  Elapsed time t o  t h e  f i rs t  penetrat ion of an a rea  

(3) Elapsed times between penetrat ions f o r  a succession of penetrat ions of 
an a rea  

The procedure of t h e  main sec t ion  of t h i s  r epor t  t i t l e d  SAMPLING PLANS FOR 
J O I N T  CONTROL OF DESIGNER'S AND OPEFlATOR'S RISKS i s  des i rab le  f o r  i n i t i a l  e s t i -  
m a t e s  of t he  s i zes  of experiments when no knowledge of t h e  population is at hand. 
Because t h a t  procedure is concerned with only t h e  f i rs t  penetrat ion of an in s t ru -  
mented area, t h e  above types of instrumentation t h a t  record multiple penetrat ions 
might be presumed t o  requi re  smaller sample s i zes .  I n  essence, they do not. 
Most space vehicles  ( e spec ia l ly  manned vehic les )  w i l l  be designed f o r  high r e l i -  
a b i l i t y  and t h e  chance of an instrumented a rea  being penetrated within t h e  a rea  
time product of t h e  mission vehicle is  very s m a l l .  Where q is t h e  probabi l i ty  
of such a penetrat ion,  t h e  probabi l i ty  of two or more penetrations is  

q2 q2 + q3 + q4 + q5 + * - * = q2(1 + q + q2 + q3 + .  . . )  =-  
1 - q  

The preceding equation shows t h a t ,  when q is s m a l l ,  t he  probabi l i ty  of 
and is thus extremely s m a l l .  more than one penetrat ion i s  of t h e  order of q2 

These remarks suggest t h a t  preliminary estimates of t h e  required s i z e  of an ex- 
periment can be based on t h e  theory of t h e  main sec t ion  of t h e  repor t :  t h e  po- 
t e n t i a l l y  ex t r a  information furnished by mult iple  count instrumentation can be 
ignored i n  designing t h e  s i z e  of t he  experiment. 

Parametric Estimation 

Because t h e  procedure of t h e  main sec t ion  of t h i s  repor t  i n t e rp re t s  t h e  data  
as "no penetrat ion of a rea  a i  occurred during ti'' or "the a rea  ai received 
i ts  f i r s t  penetrat ion during 
vided by instrumentation systems of t h e  three  types j u s t  described. After la rge  
quant i t ies  of data  have been received, t h e  nature of t h e  c lus te r ing  phenomena may 
be b e t t e r  known, and s t a t i s t i c a l  procedures might be avai lable  t h a t  would make 
f u l l e r  use of a l l  t h e  information. Data of one of t h e  types j u s t  described and 
some assumptions about t h e  probabi l i ty  d i s t r ibu t ions  of t h e  penetrations permit 
t h e  f u l l e s t  use of such information by using a p robab i l i t y  equation containing 

ti," the  procedure might discard information pro- 
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unknown empirical  constants.  Values of t h e  unknown constants a r e  estimated by 
computations from t h e  data.  
f o r  evaluat ing t h e  parameters or statements about t h e  parameters are ca l led  para- 
metr ic  s t a t i s t i c a l  procedures. 

The constants a r e  ca l l ed  parameters, and procedures 

The a r r i v a l  of micrometeoroids i s  described as t tc lus te rs  plus  background" i n  
reference 1. The background a r r i v a l s  can be expected t o  f i t  t h e  Poisson process 
model, and t h e  arrivals within any c lus t e r  might f i t  a Poisson model with high 
a r r i v a l  rate. Taken over a period of time, t h e  t o t a l i t y  of such phenomena can be 
described as a synthesis  of heterogeneous populations. As i s  pointed out i n  r e f -  
erence 15, t h e  Weibvll dens i ty  has been used t o  f i t  co l lec t ions  of heterogeneous 
populations. It might prove usefu l  i n  t h e  descr ip t ion  of micrometeoroid penetra- 
t i o n  p robab i l i t i e s  at  any given thickness.  

The co r re l a t ion  of penetrat ion data  f o r  severa l  thicknesses under t h e  as- 
sumption of a Poisson process is t h e  obvious s t a r t i n g  point  for e f f o r t s  t o  ex- 
t r a p o l a t e  thickness  data.  Non-Poisson phenomena i n  t h e  range of very high r e l i - .  
a b i l i t y  may requi re  other  s t a t i s t i c a l  procedures. Non-Poisson h igh - re l i ab i l i t y  
problems occur i n  t h e  f i e l d  of accelerated l i f e  t e s t s  of e lec t ronic  par t s .  S t a t -  
i s t i c i a n s  are developing procedures that  dea l  w i t h  t h e  e f f e c t s  of voltage or cur- 
r e n t  and temperature on t h e  l i f e  of capaci tors  and t r a n s i s t o r s .  Extrapolating 
thickness data f o r  micrometeoroid penetrat ions might prove t o  be analogous t o  
extrapolat ing temperature da ta  f o r  t r a n s i s t o r s .  
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APPENDIX B 

TBE POISSON APPROXIMATION 

The values of a and p l i s t e d  i n  t a b l e  I1 were obtained from reference 13 
f o r  sample s i z e s  n up t o  1000 and f o r  q values down t o  0.01. For l a r g e r  val- 
ues of n, the  CL and I3 values of tab le  I1 correspond t o  small values of q. 

The s i t u a t i o n  consisting of large n and s m a l l  q permits the  use of the  
Poisson probabi l i ty  function, namely, 

This approximation i s  discussed on pages x v i i i  and x i x  of reference 13. 
Basic t a b l e s  f o r  the cumulative Poisson d i s t r i b u t i o n  are  contained i n  refer- 
ence 14. Other Poisson t a b l e s  t h a t  were not available i n  time f o r  the work of 
the  present invest igat ion a re  contained i n  reference 16. The smallest  q l i s t e d  
i n  the Harvard binomial t a b l e s  ( r e f .  13) i s  0.01. Values of p taken from ref- 
erence 13 f o r  
t i o n s  as obtained from the Poisson approximation using the  t a b l e s  of refer-  
ence 14. Differences, f o r  values of n from 150 t o  1000, were no grea te r  than 
0.002. 

q2 = 0.01 were compared with values of p f o r  t h e  same condi- 

Figures 1 and 2 use data  f o r  values of n up to t h e  l a r g e s t  values of n 
contained i n  references 8 to 11. The cumulative sum t a b l e s  of the  Poisson ap- 
proximation ( r e f .  12) were used t o  p l o t  points  f o r  values of 
and values of n l a r g e r  than 1000 i n  f igures  1 and 2. 
s t r a i g h t  l i n e s  i n  f igures  1 and 2. 
p le ted by extending smooth curves from 
had been p l o t t e d  from references 8 t o  11. 

q l e s s  than 0.10 
The Poisson data  f e l l  on 

The curves of f igures  1 and 2 were then com- 
n = 1000 down t o  the  data points t h a t  
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TABU I. - TYPICAL PARAMETEEtS OF SAMPLING PLANS 

Acceptance number, 
C 

(a)  Instrument payload vehicles;  designer '8 r i s k ,  
a,  0.10; operator 's  r i s k ,  P ,  0.10; opera tor ' s  

penetrat ion probabi l i ty  l i m i t ,  q2,.0.20 

Sample s i ze ,  
n 

Acceptance number, 
C 

0 
1 
2 
5 
10 

Sample s i z e ,  
I1 

10 
18 
25 
44 
74 

Designer's penetratior 
probabi l i ty  l i m i t ,  

q1 

0.01 
.03 
.045 
.074 
.097 

( b )  Manned vehicles;  designer 's  r i s k ,  a,  0.01; 
opera tor ' s  r i s k ,  P ,  0.01; opera tor ' s  

penetrat ion probabi l i ty  l i m i t ,  

1 
2 
5 
10 
20 
50 

660 
850 
1320 
2000 
3300 
6900 

Designer's penetratioi  
p robab i l i t y  l i m i t ,  

91 

0.00022 
-00051 
-00136 
.0024 
.0036 
.0052 
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TABLE 11. - BINOMIAL SAMPLING PLANS 

Designer's Sample 
penetration size, 
probability n 

l imi t ,  
91 

risk, 
a B 

limit, 

lperator's penetration probability limit, 92, 0.00: 

Acceptance Designer' 
number, risk, 

C a 

0.0005 

0.001 

)perator's penetration probability 

1,000 

1,500 

2,500 

4,000 

6,500 

10,000 

6,500 

10,000 

limit, q2, 0.00: 

0 

1 

2 

3 
4 
5 

5 
6 
7 
8 

9 
10 
11 

9 

13 
14 

0.393 

.174 

.132 

.143 
-053 
,017 

,111 
.048 
-018 
.006 

- 032 
.014 
-005 

0.123 

-136 
-083 

0.135 

,199 

.125 

.042 

.loo 

.191 

.011 
-026 
-054 
.loo 
-005 - 011 
-021 

0.166 

- 0 6 6  
-105 

0.0005 

0.001 

0.002 

400 

650 

1,000 

1,500 

2,500 

650 
-. 

1,000 

1,500 

2,500 

4,000 

1,500 

2,500 

4,000 

6,500 

to, 000 

0 

0 
1 

0 
1 
2 

1 
2 
3 

4 

1 

1 
2 

2 
3 
4 

4 
5 
6 
7 

9 

4 

7 
8 

11 
12 
13 
14 

19 
20 
2 1  
22 

32 

0.181 
.277 
-043 

-393 
.090 
-014 

.174 
-041 
-007 

.009 

0.139 

-264 
-080 

-191 
-066 
.019 

-109 
-042 
-014 
-004 

,008 

0.185 

.133 

.068 

-112 
.064 
-034 
.017 

-043 
-025 
-014 
.008 

.005 

0.135 

.039 

.165 

,007 
-040 
.125 

.005 

.020 

.059 

.005 

0.165 

.040 

.125 

.020 

.059 

.132 

.005 

.015 
-035 
.070 

.005 

0.132 

-070 
,125 

.021 

.039 

.066 
-105 

.008 

.013 

.a22 

.034 

-004 

0.0005 

0.001 

0.002 

0.005 

151 

25( 

40( 

65( 

1,00( 

15( 

25( 

40( 

65( 

1,00( 

~ 

15( 

25( 

40C 

65C 

1, ooc 

1,50C 

2,50C 

4, ooc 

6,500 

0 

0 
1 

0 
1 
2 

0 
1 
2 

2 
3 

0 

0 
1 

0 
1 
2 

1 
2 
3 

2 
3 
4 

0 

0 
1 

1 
2 

2 
3 

3 
4 
5 
6 

10 

1 6  
1 7  
1 8  
19 

25 
26 
27 
28 
29 
30 
31  

46 

0.072 

-117  
.007 

.181 

.018 
* 001 

.277 
-043 
.005 

-014 
* 002 

0.139 

.221 

.026 

.330 
-062 
.008 

-139 
.029 
-005 

.080 

.019 
-004 

0.259 

.393 

.090 

.191 

.047 

-143 
.043 

.143 

.053 
-017 
.005 

0.138 

-131 
.084 
-052 
.031 

-112 
.078 
-052 
.034 
.022 
.013 
-008 

.010 

)perat or ' i 
risk,  

B 

Q, 0.01 

0.221 

.081 

.286 

.018 

.090 

.237 

.001 

. o n  

.042 

.003 
-010 

0.221 

.081 

.286 

-018 
.090 
.237 

.011 
-042 
.111 

,003 
.010 
.029 

0.221 

-081 
.286 

.090 
-237 

.042 

.111 

.010 

.029 

.066 

.129 

0.118 

.038 
-060 
.092 
.134 

.008 

.012 

.019 

.029 

.043 
-062 
.086 

.008 
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TABLE 11. - Continued. BINOMIAL SAMPLING PLANS 

Designer's 
penetration 
probability 
limit, 
91 

Sample Acceptance Designer's Operato: 
size, number, risk, risk, 

n C a B 

0.0005 

0.005 

0.001 

0.01 

0.002 

)perator' s 

0.0005 

0.001 

Designer's 
penetration 
probability 
limit, 
91 

15C 

25C 

40C 

15C 

25C 

40C 

65C 

1,000 

150 

250 

400 

650 

1,000 

150 

250 

400 

650 

Sample 
size, 

n 

0 
1 

0 
1 

1 
2 

1 

2 

3 
4 
5 

5 
6 
7 
8 

9 
10 
11 

0 
1 

0 
1 
2 

1 
2 

9 

13 
14 

0 
1 

0 
1 
2 

1 
2 
3 

5 

)perator's penetration probability enetratlon probal l l m l i  

lool 0 1 

.ity limit, 

1 

1501 

q2, O.( 

0 ::I 0 1 

0.072 
.003 

.117 

.007 

.018 

.OOl 

0.174 

.132 

-143 
,053 
-017 

.111 

.048 

.018 
-006 

-032 
.014 
.005 

0.139 
.010 

.221 

.026 

.002 

.062 
-008 

0.122 

-134 
.082 

0.259 
.037 

.393 

.090 

.014 

.191 

.047 

.009 

-002 

0.048 
-196 

.007 

.040 

-003 
.013 

0.196 

.123 

.041 

.OS7 

.168 

.010 

.025 

.052 

.OS7 

.005 

.010 
-020 

0.048 
.196 

.007 

.040 

.123 

.003 

.013 

0.163 

.064 

.lo3 

0.048 
.196 

.007 

.040 
-123 

.003 

.013 
-041 

.010 

- 

0.020 

.032 

.049 

.001 

.003 

0.039 

.063 
-002 

.095 
-005 

.010 

0.129 

.036 

.006 

.037 

.004 

0.129 

.036 
-158 

.006 
-037 

.004 

0.002 

0.005 

0.01 

0.02 

40 

65 

100 

150 

40 

65 

100 

150 

250 

40 

65 

100 

150 

250 

150 

250 

400 

Acceptance 
number, 

C 

ion probab 

0 

0 
1 

0 
1 
2 

1 
2 

0 

0 
1 

0 
1 
2 

1 
2 
3 

4 

0 

1 

1 
2 

2 
3 
4 

4 
5 
6 
7 

4 

7 
8 

11 
12 
13 
14 
15 

Designer's Operator' 

ritk' I 
.lity limit, qp, 0.05 

0.077 

.122 

.008 

.181 
-018 
.OOl 

.037 
,004 

0 . 1 8 1  

.277 

.043 

.393 

.050 

.014 

.174 

.041 

.007 

.009 

0.331 

.138 

.264 

.079 

.191 

.065 

.018 

.108 

.042 

.014 
-004 

0.183 

.132 

.067 

. n o  

.062 
-033 
.016 
-008 

15 

25 

4c 

65 

100 

0 

0 
1 

0 
1 
2 

1 
2 
3 

3 
4 

0.140 

.222 

.026 

.331 

.061 

.008 

.138 

.028 

.004 

.018 

.003 

- 
0.129 

.036 

.158 

.006 

.037 

.118 

.004 

.018 

0.129 

.036 

.158 

.006 

.037 
-118 

.004 

.018 

.055 

.005 

0.129 

.158 

.037 

.118 

.018 

.055 

.126 

.005 

.014 

.033 

.067 

0.126 

.067 

.121 

.019 

.036 

.061 

.099 

.150 

0.206 

.072 

.271 

.015 

.080 

.223 

-009 
.036 
.loo 

.008 

.024 

21 



TABLE 11. - Concluded. B I N O M I A L  S A M P L I N G  PLANS 

Designer's Sample Acceptance Designer's 
penetration size, number, risk, 
probability n C a 
limit, 

~ q1 I 

Operator' 
risk,  

B 

0.02 

0.05 

ksigner's Sample Acceptance 
ienetration size, number, 
robability n C 
limit, 
41 

15 

25 

40 

65 

100 

150 

150 

250 

400 

650 

Designer's Operator': 
risk, risk, 

a B 

9 

13 
14 
15 

19 
20 
21 
22 
23 
24 

0.01 

~ 

0.05 

0.111 0.137 

.124 .047 
-073 -080 
.040 .129 

.113 .013 
-072 .022 
-044 .037 
.026 -059 
.014 .089 
.008 -129 

0.02 

_ _ _  

letration 

10 

15 

25 

40 

15 

25 

40 

65 

100 

10 

15 

25 

40 

37 1 -007 I -026 

probability limit, q2, 0.50 

0 

1 

1 
2 

2 
3 

3 
4 
5 
6 

6 
7 
8 

10 

16 
17 
18 
19 

26 
27 
28 
29 
30 
31 

46 

on probability l i m i t ,  

0.261 

.os9 

.190 
-046 

-141 
.041 

.141 
-051 
-015 
.004 

.032 
,011 
-003 

0.132 

-127 
-081 
.049 
-029 

.073 
-048 
.031 
-019 
.011 
.007 

.008 

42, 0.20 

0.206 

,271 

,080 
-223 

.036 
,100 

.008 

.024 

.058 

.117 

.006 

.014 

.031 

0.106 

.034 

.055 
-085 
-126 

f009 
.015 
.023 
-036 
,052 
.075 

.006 

)perator's penetra 

0 

0 
1 

0 
1 
2 

2 

1 

2 
3 

4 
5 

5 
6 
7 
8 

10 
11 

0 

0 
1 

1 
2 
3 

2 
3 

0.096 

.140 
-010 

-222 
-026 
-002 

.008 

0.171 

-127 
,034 

-048 
.014 

.lo6 
-043 
-016 
-005 

.011 

.004 

0.183 

.261 - 035 
* 089 
.013 
-001 

.046 

.008 

0.107 

.035 

.167 

.004 

.027 
-098 

.008 

0.167 

.098 

.234 

-076 
-161 

.006 

.016 
-037 
.076 

.006 

.013 

0.107 

.035 

.167 

-027 
.098 
.234 

.OD8 

.028 

-. 

0.10 

)perator's 

0.01 

0.10 

0.02 

0.20 

0.05 

34 .030 .007 

36 -012 .017 

1( 

1( 

1: 

2: 

1( 

1: 

1( 

1: 

2: 

4( 

6: 

1( 

1: 

0 
1 

1 
2 
3 

2 
3 
4 
5 

6 

0 
1 
2 

2 

3 

4 
5 

7 
8 
9 

12 
13 
14 

21 

1 
2 
3 

2 
3 

0.096 
-004 

0.264 
.070 
.013 

-184 
.056 
.013 
* 002 

.009 

0.183 
-016 
.001 

-003 

0.121 

.164 

.061 

.109 

.047 

.017 

-043 
.019 
.008 

.006 

0.086 
-012 
-001 

.036 

.005 

0.001 
.011 

0,011 
-055 
-172 

-004 
.018 
-059 
.151 

-007 

0.001 
.011 
,055 

.004 

0.172 

.059 

.151 

- 022 
.054 
.115 

.008 
-019 
-040 

.003 

0.011 
.055 
.172 

-004 
-018 

22 
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Figure 2. - Concluded. Binomial sampling plan chart to control operator's risk. 
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(a) Designer's risk, a,  0.05; operator's risk, @, 0.05. 

Figure 3. - Sampling plans with constant designer's penetration probability lj-mit. 
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(b) Designer's risk, a, 0.01; operator's risk, B, 0.01. 

Figure 3. - Concluded. Sampling plans with conatant designer'a penetration probability 
limit. 
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